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A Comprehensive Approach to Outlier
Detection and Classfication

H.L. Gray, Stephan R. Sain and Wayne A. Woodward

Department of Statistical Science, Southern Methodist University

1. Introduction and Background

In previous technical reports we have considered the problem of automated outlier
detection under a number of different scenarios. Initially, we considered the problem of
detecting an outlier from a given population (say earthquakes or explosions) when a
training set of labeled data (i.e. its source is known) was available. These results were
successfully demonstrated by Baek, Gray, McCartor, and Woodward (1992), Fisk, Gray,
and McCartor (1993, 1994) and Fisk and Gray (1993). Ina later report Wang,
Woodward, Gray, Wiechecki, and Sain (1996) have extended this methodology to the
case in which the training data could be a mixture of any number of event types. In that
report, it was, however, assumed that the number of different types of events was known
and that at least some of the events were labeled. That is, it was assumed that at least
some ground truth was available for the training data. Sain, Gray, and Woodward (1996)
have considered the case in which the training data can again be composed of any number
of event types, but no labels are known, i.e. no ground truth is required.
Additionally, they drop the additional assumption that the number of different types of
events is known. This scenario is considered further here.

In this report 2 more comprehensive approach is considered which not only
addresses the outlier problem but considers:

a. selecting the best features

b. classifying/assigning labels




c. removing singularities to eliminate numerical problems

Additional capabilities will be added later to this comprehensive package including
adjusting for missing data and differences in signal-to-noise ratio, and the use of discrete

feature variables. These items are discussed briefly in the section on future research.

2. Technical Discussion

Our previous results are based on the assumption of the existence of a training
sample, X, X3, ..., X,, from a population (7) of interest (e.g. earthquakes or a
mixture of earthquakes and non-nuclear or industrial explosions) along with an additional

(and possibly suspicious) observation, U, to be tested as an outlier from 7. That is, the

hypothesis

Hy: U € m o)
HIZU ¢7T1 .

is tested using a generalized likelihood (GLR) ratio test. In the work of Wang, et al.
(1996) and Sain, et al. (1996), we assume that the training data consists of a sample of

size n from a mixture distribution whose density is given by
f(z) = gpigz-(m; i, 55) @)

where m is the number of components in the mixture, g;(z; p;, ;) is the density
associated with the ith component, the p;, ¢ = 1, ..., m, are the mixing proportions, and
x is a d-dimensional vector of feature variables. As mentioned above, a typical scenario

might be the case in which the mixture population consists of events associated with




earthquakes and mining explosions. The hypotheses in (1) is tested using a modified

likelihood ratio statistic, W, given by

sup Lo(e)
W = 0 e @N (3)
sup L 1(9)
O
where
Lo(6) = (H f(Xs; 0)> f(U;8),
s=1

and

7.60) =[] (X:0).

s=1

Since the null distribution of W has no known closed form, the bootstrap is used to
approximate critical values. It should also be noted that, by making use of the bootstrap
technique, this procedure requires no distributional assumptions concerning the outlier
distribution. This is a useful practical solution because of the lack of regional training
samples for nuclear events. The rejection region is thus of the form W < W, where W,
is picked to provide a level o test. The maximum likelihood estimates are obtained using
the expectation-maximization (EM) algorithm (see Little and Rubin, 1987), and initial
estimates are required for this iterative algorithm. The results of Wang, et al. (1996) are
based on a known number of components (i.e. m in (2) is known) and enough labeled
training data in order to provide these starting values.

In the setting of interest, it is probable that little none of the training data will be
labeled and that even the number of non-nuclear event types in the region may be

unknown. Current results by Sain, Gray, and Woodward (1996) show that a modification




of the Wang et al. (1996) procedure to this setting of interest is feasible. When none of
the training data are labeled, they suggest a clustering approach to group the data into
distinct classes from which initial estimates can be obtained. When the number of event
types is unknown, Sain et al. (1996) consider the use of AIC (Akaike, 1974) for purposes
of determining the number of components m in the mixture. Specifically, form =1, ...

, M, the AIC criterion is defined by

AIC(m) = — 2In(Lymez(m)) + 2(# of free parameters) (4)

where Lpqz(m) is the maximized likelihood of the training sample under the assumption
that there are m components, M is a sufficiently large integer, and the last term is a
penalty imposed to avoid overfitting. Parameter estimates are obtained via the EM
algorithm. For eachm, m =1, ..., M, a hierarchical clustering routine is used to obtain
m initial groups to provide starting values for the EM algorithm. The AIC criterion is
calculated for m = 1, ..., M, and the number of components, mayc, associated with the
minimum AIC value is chosen. The test statistic for the data, W, is then calculated based
on mac components. The distribution of W in this setting is obtained using the bootstrap.
The authors also examined the use of BIC (Akaike, 1977) which imposes a more
stringent penalty and has better asymptotic behavior than AIC. The findings based on
simulations were that in the cases considered, the use of either AIC or BIC combined
with initial clustering produced results that are surprisingly comparable to those based on
knowing m and the availability of some labeled data. Additionally, our simulation results
seem to favor AIC over BIC although both methods tend to produce satisfactory results.

For specific results see Sain, et al. (1996).




a. Feature Selection

In most settings there will eventually be a large number of available feature
variables with which to perform the analyses. We have examined the problem of
identifying the "best" features for use. Since the goal is to obtain features that best
separate the outlier population from the population of the training data, it is not surprising
that the selection of "best" features requires some knowledge of both populations. Our
initial solutions to the feature selection problem have used a forward stepwise procedure
that begins by finding the "best" single feature. The best single feature is defined to be
that feature for which the power of detecting the outlier in a given set of alternatives is
the largest for fixed false alarm rate. Once the best single feature is obtained, a second
feature is added that maximizes this power for two features. Features are added untilaa
predetermined maximum number of features is attained or until the resulting power
begins to decrease. It is important to note that in many instances, use of all available

features is not the optimal choice in terms of maximizing power. Itis also important to

understand that the best set of k features will not necessarily consist of the best k features

considered separately. In this regard, the role of correlation among the feature variables
is emphasized by considering the simulated example involving training samples with
hypothetical features as shown in Figure 1. Here we see a case in which the features are
independent (left-hand side) and a case in which they are highly correlated (right-hand
side). In the top row, a potential outlier indicated by the solid dot at (-1, 1) is not
determined to be an outlier in the case of independent features (upper left-hand) while it
would be classified as an outlier in the highly correlated setting despite not really being
an unusual observation in either of the univariate dimensions taken separately. Thus, in
this case, if the outlier population of interest were centered around (-1, 1) then the two
highly correlated features would be the preferred set of features since points around (-1,
1) are highly unlikely to occur in their bivariate distribution as can be seen in the figures.

The very opposite type of behavior is shown in the plots on the bottom row. That is, the
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potential outlier at (2, 2) would be classified as an outlier in the case of independent
variables but is not as unusual when considering the distribution of highly correlated
variables. The lesson to be learned from such an example is that correlation as well as the
position of the outlier must be taken into account when considering variable selection.

What is really needed is a robust procedure for variable selection that requires
little or no information about the outlier population, and this will be a focus of our

research in this area. These remarks will be demonstrated further when we consider some

real data in Section 3.

b. Classifying/Assigning Labels

Tt was noted that when the training sample consists of a single (non-mixture)
population, the outlier test automatically classifies an observation as being a member of
the training sample population (e.g earthquakes) or not. However, it is clear that when
the training sample comes from a mixture distribution, failing to reject the null hypothesis
does not indicate which component of the mixture to which the event should be assigned.
The same problem actually arises with the training sample observations themselves in
this mixture setting. Simply knowing that observation X, belongs to the training sample
and is non-nuclear does not indicate what type of event it is. We have performed
investigations into the labeling of training sample events and new events determined to
not be outliers, and developed methodology for this purpose when there are two or more
populations to be labeled.

We first consider the case in which the training data consist of two components
where the goal is to label the observations in the training sample. Each point in the
training sample is tested as an outlier from each of the two training sample components
and corresponding p-values obtained are associated with each component. Based on
these p-values, each training sample member would be assigned a component

membership or will be left unassigned when membership is not clear as defined by some




predetermined p-value. Whereas most multivariate tests are inherently nondirectional, we
have developed and are continuing to develop tests based on a focused critical region (see
Schucany, Frawley, Wang, and Gray, 1996). This report is included in the appendix.
Such tests can be used to improve our ability to assign component membership based on
the position of the training sample value being tested with respect to the locations of the
corresponding component centroids. When the distribution of the training sample has
more than two components, the testing can be based on considering the components two
at a time. Actual "naming" of components can be done by an analyst, or by a defined

statistic and/or auxiliary variables.

c. Removing Singularities to Eliminate Numerical Problems

When d features measured on n events are detected at J stations, then when dJ is
large, data compression may be required. Let X ;i; denote the measurement of the kth
feature for the 7th event in the training sample measured at the jth station. That is, for the

kth feature, we have the following training data:

Station 1 ... Station J
X1k v Xk

Xlkn XJkn

We use the notation X j; to denote the average of the n events measured at station j and
feature k and X, = ()—( 1k, s X Jk) to denote the vector of these averages evaluated at

each of the J stations. The J station readings for the potential outlier at the kth variable

are denoted by Uy, = (Ur, ..., Usk)'




In the non-mixture setting, Fisk, Gray, and McCartor (1995) and Gray,
Woodward, and Yiicel (1995) considered several strategies for dealing with multi-station
data. When Jd is not too large, an obvious approach would be the "full-vector” approach
in which the d features at each of the J stations are considered as a single vector

consisting of Jd feature variables, i.e.

X; = (X11i, X125 e » X1di» X21i X224, - » X2dis - » X 716X 1285 o5 X - (5)

A new observation to be tested as an outlier is then a similarly configured Jd x 1 vector
denoted U. This full-vector approach is not a data compression approach, and when Jd
is large, this approach may not be feasible. Another approach considered by Fisk, et al.
(1995) and Gray, et al. (1995) included declaring an event to be an outlier if any of the
individual station-based tests finds it to be an outlier using a Bonferroni-based adjustment
to assure that the overall significance level is no larger than c. They also investigated
methods of compressing the data by calculating new "features", that are linear
combinations of the observations on feature & at each of the J stations. The outlier
detection is then based on a likelihood ratio test as before but is calculated using only the
d new variables. Fisk et al. (1995) and Gray, et al. (1995) considered weights chosen to
minimize the variance of the resulting feature. Simulation studies by these authors found
that the power of the full-vector approach was the best of the procedures considered since
it was more robust and consistently competitive with the other procedures. However, due
to the potential dimensionality problems with the full-vector approach, data-compression
alternatives have continued to be explored. Recent results by Woodward, Wang, Gray,
and Frawley (1996) provide compression weights that give results that are similar to
those of the full-vector approach. The weights used for the kth feature are designed so
that the distance between the mean of the compressed training data and the compressed

potential outlier is a maximum. They also considered a two-stage compression




approach. Their initial simulation results indicate that these new compression procedures
perform comparably with the full vector approach and are thus to be preferred when
dimensionality is a problem for the full-vector approach.

Wang, et al. (1996) have developed a GLR outlier test for the more realistic case
in which there may be more than one type of non-nuclear event in a region, and the
training sample is from this mixture distribution. Their work allows for the training
sample to represent a sample from, for example, earthquakes and mining blasts.

If data are collected on d features at J stations, then if Jd is not large, as in the non-
mixture setting, the full-vector approach would be a viable approach. However,
dimensionality may prove to be a problem and alternative approaches have been
considered. As in the non-mixture case, an individual station-based approach would be
possible that declares an event to be an outlier if any of the individual station-based tests
(using the Wang et al. (1996) GLR test) finds the event to be an outlier using a
Bonferroni-based adjustment. Recall that in the non-mixture case this procedure proved
to be inferior to the full-vector approach. Unfortunately, in the mixture case, we have
been unable to find weights analogous to those considered by Woodward, et al. (1996) for
optimally combining stations to produce maximum separation between the outlier
population and the population of the training sample. However, preliminary results show
that a viable approach to data compression in the mixture setting is as follows. For a
given station j, one can consider the readings from the d features as a d-dimensional
"feature" vector on which the modified likelihood ratio test of Wang et al. (1996) can be
applied to obtain W (j). In this case, large values of W ~1( ) are suggestive of an outlier.
Letting H = (W-1(1), ..., W™L(J))’, we calculate Dy = H'S 4 H as an overall
measure of the size of the W™1(5)’s. Thus, large values of Dy suggest that the observed
value is an outlier. We can then use a bootstrap approach to approximate its null
distribution. It should be noted that the original sample of size n produces only a single

observation on H, and because of this we use a separate bootstrap step to calculate b3 H-

10




Specifically, we obtain By nonparametric bootstrap samples of size n + 1 from the
original training sample, and from each of these samples we calculate H. We then let
S be the sample variance/covariance matrix. We then take B; nonparametric bootstrap
samples of size n + 1 from the original training sample in order to find the null
distribution of Dy using the ) 7 obtained from the first bootstrap step. Specifically, for
purposes of the hypothesis test, the 100(1 — o)th percentile of D (b),b=1, ..., Bais
found. Ideally, given a bootstrap sample for which Dy is to be calculated, a second
bootstrap sample would be taken from this sample in order to obtain a bootstrap-based
estimate of 3 g specific to that sample. However, this procedure would be very
computationally intensive, and we have thus chosen the faster method of simply
calculating 3 5 once and using this estimate for each of the B; bootstrap samples.
Preliminary simulation results have shown that this procedure has merit. We have
considered a hypothetical case of two features and two stations. For station j, j = 1, 2,

the distribution of the training sample follows the mixture model

fi(x) = 0.5g15(x; p1j, ;) + 0.5g2(x; paj Xj) (6)

where grj(z; pr, ;) is the (multivariate normal) density associated with the rth
component, and « is a 2-dimensional vector of feature variables. Note that the two
components each have the same covariance. In the simulations, p1; = (—1,1)and

p2; = (1, — 1) for each station. The outlier populations were assumed to be MVN with
variance/covariance matrix I and with the mean vector of the outlier population &k given
by (k—4, k—4), k=1, ..., 4. In Table 1 we consider the case in which Yy =3s=1
and the case ©; = I and 3y = 41 where I is the identity matrix, where in both cases
considered here the stations are assumed to be independent. In Table 1 we compare the
full-vector results with those based on Dg. There it can be seen that the test based on

Dy had power comparable to that using the full-vector test.

11




It should be noted that these results are very preliminary, and we are continuing to
study data compression in the mixture setting in the presence of differing correlation

structures between stations and feature variables.

Table 1. Power Comparison Between Dy and Full Vector Test

k
1 2 3 4
Dy 998 | .901|.299 | .037 | Xy =%s=1
Full Vector | 1.000 | .893 | .362 | .075
Dy 974 | 668 | .179 | .043 | 1 =1, Xy =4I
Full Vector | .966 | .706 | .234 | .070

3. Example Using Seismic Data

In order to clarify the remarks in the previous section we consider a data set
furnished by Dr. Steve Taylor of LANL. The data consists of log(Pg/Lg) ratios at various
frequency bands obtained from events at WMQ in western China. The training data
consist primarily of earthquakes along with what may be a few commercial explosions.
Additionally, 18 nuclear explosions from the region are also available.

For clarity of exposition, our initial analysis (presented in the current and next two
paragraphs) uses only two features. Following this we consider the more general problem
which includes selection of the best features. The two features considered initially are
log(Pg/Lg) ratios for bands 1-2Hz and 4-8Hz. Feature selection will be considered later
and is used to choose the "best" set of feature variables. For these data, AIC and BIC
picked three and one populations respectively as the most likely mixture. This is
illustrated in Figure 2. In order to examine these fits, we generated parametric bootstrap

samples from the 3-component and 1-component models picked by AIC and BIC

12




respectively. The number of components chosen by AIC and BIC were obtained for each
of the samples from the 1-component model, and both procedures tended to correctly find
one component. However, for the samples from the 3-component model, AIC tended to
pick three components while BIC (incorrectly) continued to pick a 1-component model
for the majority of these samples. Furthermore, resampling from the original data
(nonparametric bootstrap) resulted in AIC usually picking three components while BIC
picked one. These comments are illustrated in Figure 3. These and other simulations
suggest that AIC's estimate of three components is the more reliable estimate of the
number of components although both fits were satisfactory.

In Figure 4, we show the scatterplots of the two features for the training data
along with the components of the AIC and BIC mixture distribution fits and associated
contours of the mixture distributions. While it is unclear whether the three components
selected by AIC have a physical interpretation, it is clear that the mixture method
provides a flexible model that will allow for considerable non-normality without
increasing the false-alarm rate.

In Figure 5, we show the scatterplot of training data along with the corresponding
points for the nuclear explosions. There it can be seen that for these data, there is strong
separation between the training sample and the "outliers" to be tested. It is not surprising
that the test based on W correctly detected all of these points as outliers (using either AIC
or BIC). In order to examine the power of the outlier test when the "outlier population” is
not as widely separated from the training data as the one for the current data, we moved
the outlier population closer to the center of the training sample along the path indicated
in the figure. The letters (a — k) indicate the positions of the outlier population means
considered. The sample covariance from the nuclear data was used to generate samples at

each of these locations. A simulation study was performed to study the power of the

13
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outlier test (using AIC and BIC) for outlier points from each of the artificial outlier
populations. For widely separated outliers (h — k), both procedures were always able to
properly detect them. Also, when the outlier population was too close to the training data
(a — ¢) the outliers were rarely detected, as is to be expected. For outliers between these
extremes, (¢ — g), the use of the three component model for the training data obtained by
AIC resulted in much larger powers. These results are displayed in Figure 6. It should be
noted that these results are dependent on the position (and in particular the direction) of
the outlier population.

The WMQ data set included log(Pg/Lg) ratios for seven different frequency

bands. Using the stepwise feature selection procedure discussed previously in Section 2,
three features were chosen. These were the log(Pg/Lg) ratios for bands 0.5-1, 1.5-3, and
4-8Hz. It is interesting to note that these three features were chosen as best based on
either the AIC or BIC choice of number of mixture components, and that in both cases

the resulting outlier detection power decreased with the use of additional features. Also
of interest is the fact that even though the high frequency ratios tended to best separate

the populations when considered individually, the best set of three variables is composed
of a low, middle, and high frequency ratio, and the best two features are a low and high
frequency ratio. A correlation analysis and the position of the outlier population shows

why the low and middle frequency ratios are included in the set of best features. In
Figure 7, univariate densities are shown for log (Pg/Lg) ratios in the 0.5-1 Hz, 3-6 Hz,
and 4-8 Hz frequency bands. In these plots, earthquakes are denoted with solid lines and
nuclear events with dashed lines. Note that the low frequency shows no separation
between the two event types while the two high frequencies show considerable
separation. In Figure 8, we show the scatterplots for the training data (denoted "Q") and
nuclear data (denoted "X") for two sets of feature variables. In Figure 8(a), we consider
the log (Pg/Lg) ratios in frequency bands 0.5-1 Hz and 4-8 Hz while in Figure 8(b) we

show a similar plot using log(Pg/Lg) ratios in the two separate high frequency bands, 3-6
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Hz and 4-8 Hz. In Figure 8(a), it can be seen that although the low-frequency ratio is a
poor discriminator individually, its use in conjunction with a high frequency ratio
enhances the degree to which the nuclear data is separated from the training data better
than using the high frequency variable alone. In Figure 8(a) it can be seen that the
nuclear data is separated from and not consistent with the correlation structure present in
the training data. In Figure 8(b), it is seen that the two high frequency ratios are
providing highly correlated, redundant information. While the separation between the
training data and the nuclear data is still apparent, this separation was essentially no
greater than that which would have been observed using a single high-frequency ratio,
and hence the two high frequencies when considered together did not perform as well as
the low and high frequencies considered jointly.

In this example, although seven features were available, a particular subset of
three was selected as best. The methodology used for selection can be used when the
"direction of interest” of the outlier population is known for the features of interest.
However, this may not be the case and more robust methods will need to be developed.

In order to demonstrate the labeling (or classification) to the WMQ data we
artificially add a second component that is somewhat closer to the training data but in the
general direction of the nuclear data. This would approximate the case of two major
components in the training data (e.g. earthquakes and explosions). In Figure 9,
scatterplots of the previous training data along with the artificial second component are
shown. In our analysis we treat this expanded data set as the new training sample. Not
surprisingly AIC and BIC picked four and two components respectively. The
components and contours for the fits are also shown in Figure 9. For simplicity, using
m = 2 as selected by BIC we then applied the labeling procedure using a focused critical
region test to classify the training sample elements. The results of this classification are
shown in Figure 10 where the component in which the points were placed is indicated

with a "1" or "2" while unclassified points are indicated with "0". It should be noted that
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these unclassified events are still in the mixture (i.e. not outliers) but there is insufficient
evidence to classify them into one group or the other. It can easily be seen that the
classification has done a good job of classifying the points into their correct groups,

which are known in this case.

4. Future Research

Although much has been accomplished, there is much yet to be done in order for
the methodology developed and being developed to function properly and robustly in the
expected environments. Several issues which we will be addressing in the near future

include modifying the GLR method for mixtures to adjust for:

(a) signal-to-noise ratio
(b) missing data

(c) use of both continuous and discrete features
Each of these items is briefly discussed in the remaining parts of this report.

(a) Signal-to-Noise Ratio

In all of our previous results, although the variance/covariance across realizations
was properly accounted for in the GLR method, the signal-to-noise ratios for the
waveforms were assumed to be adequate and comparable. This may not be the case, and
therefore it will be necessary to adjust the various features for signal-to-noise ratio before
feeding the data to the GLR outlier and classification programs.

As an example suppose the observed feature X;is

25




52 _ RMS(Pg;+ni)
¢ = RMS(Zgi+n) 2

for Pg; and Lg; in some given frequency band where n; is the associated noise. Then, if
the noise is uncorrelated with the signal, we have Var(Pg + n) = Var(Pg) + Var(n) and
Var(Lg + n) = Var(Lg) + Var(n). Thus, Var(Pg) = Var(Pg+ n) — Var(n) and
Var(Lg) = Var(Lg + n) — Var(n), so that

Var(Pg) 1/2 __ [ Var(Pg+n)—Var(n) 172
(Var(Lg) ) — \ Var(Lg+n)—Var(n) ’ (®)
But (8) suggests the corrected feature
MS(Pg;+n:)-MS (n;)\ /*
Xi= (MS(Lgi+m)—MS(m)> ’ ©)

and as we see, this feature variable is adjusted for signal/noise ratio and estimates the true
feature ratio, shown on the left side of (8). The feature X; could now be used in the GLR
method in place of X i. The same argument could be made for any feature based on the
ratio of RMS values and in that case the noise variables need not be the same (as would

be the case in cross-spectral ratios). That is, if X ; 1s given by

~ _ RMSi(fii+m)
* 7 RMSy(fuita;)’ (10)

where o i £ ai ,then a similarly determined X; would be used in the tests.
These approaches and others will be investigated so that the signal-to-noise ratio
of each feature will be properly incorporated into all of the GLR outlier routines and

classification methods.
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(b) Missing Data

Actual seismic data will often involve missing observations. We have previously
investigated the use of the EM algorithm (see Little and Rubin, 1987) for dealing with
missing data in the case of outlier detection where the training sample comes from a
single (non-mixture) population and a single station is used (see Miller, et al., 1993,
1994). Interestingly, one of the findings of Miller, et al. (1993, 1994) was that the use of
a simple mean-replacement procedure performed as well as the use of the full EM
algorithm in this case. Of course, if the full vector approach to multiple stations is used,
then the previously developed missing data analysis will apply. However, when data
must be compressed, appropriate methods of handling missing data need to be developed.

Additionally, techniques for appropriately dealing with missing data in the case of
multiple populations in the training sample need to be developed. Preliminary results by
Sain, et al. (1996) indicate that the use of mean replacement after a clustering based on
available data has the effect of artificially reducing the estimated component variances
which results in inflated significance levels. Thus, it appears that the use of the EM
algorithm will required in this case to improve performance, and we propose to
investigate this application. If we consider the mixture density as in (2) where X is a d-
component feature vector, then actually this mixture model can be considered to involve
ad + 1st categorical variable that defines component membership. In the case in which
some or all of the training data are unlabeled, this categorical variable has missing
observations. The EM algorithm used by Wang, et al. (1996) and Sain, et al. (1996)
accomplishes the appropriate maximization in the presence of the missing data
concerning membership. Our future research will examine the use of the EM algorithm

to handle not only the missing component membership information but also missing data

on the feature variables.
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(c¢) Discrete and Continuous Feature Variables

The use of both discrete and continuous feature variables were included in the
results by Baek, et al. (1992) and Gray, et al. (1996) for the problems of outlier detection
and of classification when the training sample originated from a single (non-mixture)
population. Additionally, Miller, et al. (1994) considered this situation when some data
were missing.

Unfortunately, those results do not apply directly to the more general mixture case
which was introduced to eliminate the need for ground truth in outlier detection. The use
of both discrete and continuous feature variables in the multiple population (mixture)
setting will be addressed in the upcoming research in order to also eliminate the need for
ground truth in the case of mixed continuous and discrete data. Similarly, the use of
discrete and continuous feature variables in data compression will also be addressed both

for the single population and multiple population settings.
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Multivariate Testing with Positive Orthant Alternatives

William. R. Schucany, William. H. Frawley, Suojin Wang, and H. L. Gray,

ABSTRACT

The likelihood-ratio test (LRT) of the null hypothesis that a multivariate mean equals
zero versus the positive-orthant alternative is reexamined. Perlman (1969) derived the
exact null distributions under normality for general cone alternatives. However, because
these distributions depend on the unknown covariance matrix, the usable critical points
have only been bounds. For important cases the resulting one-sided tests are biased. The
disappointing performances of these approximate LRT have been the subject of several
critical articles over the years. We show that the bootstrap can rescue the LRT by
estimating the appropriate critical point. ~Monte Carlo comparisons confirm its
superiority to Hotelling's T2, a "half-space" alternative investigated by Tang (1994) and
closely related simple test due to Follmann (1996). The proposed nonparametric test
should perform well when the distribution is not multivariate normal. In addition, it is

easy to extend the methodology to general cone-shaped critical regions.

Key Words: Bootstrap, Cone, Likelihood-ratio, Non-normality, One-sided

1. INTRODUCTION

First consider the special case where the x;, i = 1,...,n are a p-dimensional random sample
from a normal population with unknown mean g and covariance matrix . Suppose that
one is testing the null hypothesis that the mean of the population is located at zero versus
the alternative that at least one of the elements of the mean is non-null. It is well known

William R. Schucany is Professor of Statistical Science, William H. Frawley is Director of the Center for
Statistical Consulting, and H. L. Gray is Frensley Professor of Mathematical Sciences, all at Southern
Methodist University, Dallas, Texas 75275. Suojin Wang is Associate Professor of Statistics at Texas
A&M University, College Station, Texas 77843. This research was sponsored in part by ARPA Contract
No. F19628-95-C-0098.
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that the likelihood-ratio test (LRT) in this instance leads to the Hotelling 77 statistic and,
subsequently, an F statistic with p and n - p degrees of freedom. We will address the

nonnormal case with our proposed approach.

There are instances in which one may be interested only in detecting specific departures
of the mean vector from the null hypothesis. For example, if the data are responses of
subjects to a stimulus in an experiment, then the effects may only be of interest if the
individual elements of the mean are located in a specific direction from the origin.
Without loss of generality, the direction of interest can be selected to be the positive

orthant, where at least one of the y; is positive.

Again under normality Perlman (1969) developed the theory for a LRT with one-sided
alternatives (cones). His LRT has been the subject of many articles since it appeared.
The exact null distribution depends on the covariance matrix. Consequently, the usable
critical values have only been bounds. For important classes of alternatives, such as for
the positive orthant case, these bounds produce biased tests. A recent article to address
this difficulty is by Tang (1994), who shows that these same critical points are exact for a
"half space” alternative. For a variety of values of p and », Tang empirically compared

the improvement in power of the LRT, with a particular half space alternative, over the 72

test.

This same one-sided alternative is examined by Follmann (1996). The new simple test
introduced there uses traditional approximations to Hotelling's 72 along with a
requirement that the sum of the components in the sample mean vector be positive. The
effect is that observed significance levels (either exact or approximate) are divided by 2.
While this new test does have greater sensitivity than the classical omnibus test, it is quite
specifically for the multivariate normal distribution. The new test is certainly simple, but
somewhat ad hoc in focusing upon the sum of the components. The parametric
counterpart that >4; > 0 contains not only the positive orthant, which is of interest to us,
but also more of the parameter space that is not. This is essentially Tang's halfspace
without the more difficult requirement of maximizing constrained likelihoods and

Perlman's exact critical points. More importantly, all of these rely heavily upon
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multivariate normality for their validity, as do the more technical recent results of Berk
and Marcus (1996).

The primary difficulty associated with applying Perlman's LRT when the cone is the
positive orthant is the lack of an exact critical point under the null distribution. The
bootstrap method (Efron (1979), Fisher and Hall (1990)) provides a solution to this
difficulty, at least for samples of "moderate” size (e.g., n 10 for p = 2). A second
difficulty is algorithmic in nature, in that as the dimension increases, computation of the
LRT statistic becomes more complex. High-speed processing enables the use of a

straightforward approach to this obstacle.

In this paper we apply the LRT of Perlman to the positive orthant cone, without assuming
normality, by employing nonparametric bootstrapping to estimate the critical point under
the null hypothesis. Details of calculating the test statistic are given in Section 3. Monte
Carlo results are presented in Section 4 to illustrate the gains in power relative to the T’ 2
and Tang's half space alternative. Even though the normality assumption holds for our

simulations, the bootstrap is superior without using that information.
2. THE LIKELIHOOD-RATIO TEST WITH A HALF SPACE ALTERNATIVE

A half space, H+, is a set of the form {v | viu 0} for some fixed vector u. A set is one-
P u

sided if it is contained in the interior of a half space. A conme is a positively
homogeneous, closed, and one-sided set. The problem is to test the null hypothesis that
= 0 versus the alternative hypothesis that o € C, where C is a cone.

Perlman derived the likelihood ratio statistic to be
UGm,A,C) = |m||} (1 + [jm - x|, M

where x denotes n!/2 times the sample mean, 4 is (n - 1) times the sample covariance

matrix, and m ( = f,) is the vector in C that is closest to x in terms of the Mahalanobis

distance
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||m - x”j =(x-m) 4(x - m). )

Assuming normality Tang (1994) used a result of Perlman (1969)to calculate critical
points for the LRT statistic U(x,m,A,H:), and compared, via Monte Carlo results, the

power of U(x,m,A,Hj) versus the Hotelling 72. Here H; is the half-space defined by the
vector J = (1,1,...,1)".

These quadratic forms can be motivated from far more general considerations than
normal likelihood. As an early example, Fisher (1938) described his linear discriminant
as the result of maximizing the ratio of two quadratic forms, which represent the variation
between and within groups. This is true no matter what types of variables are elements of
the vectors, including combinations of discrete and continuous. For some evidence and
discussion of these points see Titterington, et al (1981). Consequently, our extension has
much broader application than to the multivariate normal setting. Nevertheless, it is

interesting to see how helpful it is in the special case.
3. EXTENSION TO THE POSITIVE ORTHANT ALTERNATIVE HYPOTHESIS

It is difficult (perhaps impossible) to analytically calculate critical points for the test
statistic U(x,m,4,0") in which C is the positive orthant O*. However, bootstrapping
provides one means of estimating the critical points of the statistic under the null
hypothesis that the mean is 0. The process for conducting a test of size «, using

nonparametric bootstrapping, is described in the following steps.

Procedure for the Bootstrap Test of the Null Hypothesis that the Mean is Zero
Versus the Alternative that the Mean is in the Positive Orthant

1. Compute the U(x,m,4,0") statistic using the original set of observations.

2. Subtract the mean of the sample from each of the observations, leaving the »

residuals.
3. Draw with replacement a random sample of size # from the residuals (for
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3. Draw with replacement a random sample of size # from the residuals (for

which the null hypothesis holds conditionally).

4. For that sample, compute the statistic U(x*,m*,4*,0"), where the * denotes

the same quantities in (1) evaluated on the (re)sampled residuals.

5. Repeat steps 3 and 4 a total of B times and save the values of U*.

6. Calculate the (1 - o)th quantile of these B realizations, u).q, the bootstrap

estimate of the critical value.

7. If the statistic of step 1 equals or exceeds u.q, then the null hypothesis is
rejected in favor of the alternative that u € Q.

The main difficulty in carrying out the preceding steps is the calculation of the statistic in
(1). If all the elements of the vector x are non-negative, then m = x, the denominator of
(1) is unity, and the statistic is essentially the standard T2 statistic. If, however, some or
all of the elements of x are negative, then it remains to find the vector m in O which is
closest to.x in terms of the Mahalanobis distance. To aid in understanding the process,
the methodology for the two-dimensional case will first be examined and then a general

procedure will be described.

When p = 2, let the y; axis be the abscissa and the s axis be the ordinate. The positive
quadrant, where values of pjand up are positive, is labeled as Quadrant 1. As usual,
Quadrants 2 - 4 are found by moving counter-clockwise. If the first element of x is
positive and the second element is negative, then X is located in Quadrant 4. This
example is depicted in Figure 1, which shows x at the center of an ellipse which is
touching the p; axis at the point m; = (m1,0). The shape of the ellipse is governed by the
elements of A"1. The vector my is the closest point to x on the 4, axis in the sense that it

minimizes the distance
g(my) = (x - (m1,0))'4™ (x - (m1,0)"). 3)
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If the elements of the 4”1 matrix are denoted by ¢, i = 1,2, then the value of m; which

minimizes (3) can be found by elementary calculus to be
= (c1px2 + cr1x1)/c11- 4

In the figure, (m1,0) is located on the non-negative part of the y; axis, and thus is a
Jegitimate candidate for the closest point in O* to x. In general, if m; were found to be
negative, then the point (0,0) would be the point in Q" closest to X and on the p; axis .

There is also a point my = (0,ms) that is the closest point to x on the p» axis. It is the

point which minimizes the distance
g(my) = (x - (0,m2)) 4 (x - (0,m2)), &)
and again by calculus
my = (c12%1 + €22%2)/C22. ©)

If m, were found to be negative (which it would be in Figure 1), then the point (0,0)
would be the point in Q" closest to x and on the up axis. The value of m that is used in
(1) is the one associated with the smaller of g(m;) and g(my); otherw1$e m = 0, if neither

m; nor my are in o*.

In summary, if x does not fall in the first quadrant, then depending on the quadrant in
which it does fall and its sample covariance structure, there may not be a point m on the
border of Q" other than the point (0,0), in which case U(x,0,4,0") is equal to zero. The
algorithmic approach for calculating the statistic U(x,m,4,0") in two dimensions is

summarized in the following steps:
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Algorithm for Calculating U(x,m.4.Q") in Two Dimensions
1. Setm =0 and dmin = ||x]’-
2. Calculate m; from (4). If m; <0, go to step 4.
3. Calculate g(m;). Set m = (m;,0)' and dmin = g(my).
4. Calculate my from (6). If mo <0, go to step 6.
5. Calculate g(my). If g(my) < dyin, set m = (0,my)".
6. The current value of m is used to calculate U(x,m,4,0").

The extension of this algorithm to higher than 2 dimensions is given in the Appendix.
4. SIMULATION RESULTS AND AN EXAMPLE

To illustrate the improved power that is realized with the focused alternative hypothesis, a
sequence of Monte Carlo experiments was conducted using a DEC/Alpha-2000A
processor. The software was written in FORTRAN, including the pseudorandom-number
generation which was transcripted from Pascal routines presented by L'Ecuyer and Cote
(1991). Estimated power for each experiment was the proportion of 10,000 iterations in
which the test statistic was found to be in the critical region (standard error < 0.005).
Various values of B, the number of bootstraps used for each focused alternative critical
point, were studied. The one reported here is 499. Significance levels for the tests were
o =10.05 and a = 0.01. Results for o = 0.05 are representative and are summarized in this

section.

For various sample sizes from bivariate normals, Tables 1 and 2 compare the significance
levels and the powers of Hotelling's 72, Tang's half space test (U(H;)) defined by the
vector J = (1,1)', and our positive orthant test, U(Q"). The alternative g = (0.5,0.5)"/212
is clearly in Q. In these tables, and in other results to follow, the diagonal elements of
the covariance matrix are unity while the values of the off-diagonal elements are given by

the correlation coefficient, p.
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Table 1. Comparison of Estimated Significance Levels of Three (o = .05) Tests
in Two Dimensions with p = 0 (Standard errors are approximately .002.)

Statistic Sample Size
10 [ 17 {22 |27 |32 | 42 | 62
Q") |.035].044 | .047 | .051 | .047 | .050 | .051

U(H}) 050 | .049 | .051 | .052 | .051 | .049 | .050
T2 052 | .049 | .051 | .051 | .050 | .050 | .051

Table 2a. Comparison of Estimated Powers of Three (a = .05) Tests in Two Dimensions

(Standard errors of these entries are < .005.)

(p=0)

Statistic Sample Size
10 |17 [ 22 |27 |32 |42 | 62
Q") | .252].502.631|.722 | .795 | .896 | .974

U(H,) | 263 | 452 | .569 | .666 | .737 | .857 | .960
72 198 | 372 | .488 | 587 | .665 | .803 | .938

Table 2b. (p=0.5)

Statistic Sample Size
10 |17 | 22 |27 |32 |42 | 62
(0" |.160 | 337 | 448 | .524 | .599 | .731 | .883

U(Hj) 197 | 320 | 420 | .486 | .558 | .693 | .858
T2 150 | 253 | 346 | .407 | .481 | .621 | .810
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Table 2¢c. (p=-0.5)

Statistic Sample Size
10 | 17 | 22 |27 |32 |42 | 62
U@ | .468 | .798 | .904 | .950 | .977 | .995 | 999

U(Hj) 446 | 729 | .852 | 915 | .957 | .990 | .999
Vi 363 | .653 | .796 | .880 | .936 | .981 | .999

The observed significance levels for p = — 0.5 and + .5 are not reported because they
are similar to those in Table 1. The levels for U(Q") are significantly less than the
nominal .05 at » = 10 and 17. This suggests that the bootstrap approximation may be
inadequate in the smallest samples. This conservatism accounts for it having less power
than U(H;) at n = 10 in Tables 2a and 2b. Nevertheless it still had greater power for »

17. The same general pattern holds in Table 3.

The noncentrality parameter equals the square of the individual elements of the mean,
which is 0.25 in Table 2. Maintaining this noncentrality parameter for three dimensions
(p = 3) yields Table 3 when the correlation is zero. The standard errors are the same as
in Tables 1 and 2. Because Tang did not report critical points forn =10 and p =3, a
sample of size 11 is used in Table 3 in lieue of » = 10.

Table 3a. Comparison of Estimated Significance Levels of Three (o = .05) Tests
in Three Dimensions with p = 0 (Standard errors are approximately .002.)

Statistic Sample Size
11 | 17 | 22 27 32 42 62

U0 |.022].034[.041].044 | .046 | .044 | .053
U(Hj) 054 | .048 | .051 | .051 | .048 | .044 | .055
7> 055 | .046 | .053 | .051 | .049 | .044 | .056
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Table 3b. Comparison of Estimated Powers of Three (o = .05) Tests
in Three Dimensions with p = 0 (Standard errors are < .005.)

Statistic Sample Size
11 [ 17 [ 22 |27 |32 |42 | 62

U(Q") |.162 | 395 .544 | .661 | .746 | .858 | .963
U(H;) 211 | 347 | 464 | .566 | .648 | .783 | .927
T? 1721 292 | 397 | .504 | 590 | 734 | .904

Using that same noncentrality parameter for a sample of size 27, the powers of the three
tests as a function of dimension are given in Table 4. The focused test, U(Q™), has

significantly greater power for every one of these cases.

Table 4. Comparison of Estimated Powers of Three (o = .05) Tests
for a Sample Size of 27 with p =0 (Standard errors are < .005)

Statistic Dimension
2 3 4 5 6
ugh 722 | 661 | .603 | .534 476

UH) | 666 | .566 | .490 | 426 | .382
2 587 | 504 | 439 | 380 | .343

In a different direction, it is of interest to compare the power of U(Q") versus U(H;) in
the case of four dimensions and n = 40 for a variety of alternative means. Define the
following four vectors: v = (1,0,0,0)', vo = (1,1,0,00/2'2, v3 = (1,1,1,0)/3'2, and v4 =
(1,1,1,1)/2. For any of these vectors, by letting u = Av;, the power over a range of values

of )\ can be examined.

For negative values of A, neither the null hypothesis nor the alternative hypothesis is true
for either test. In the typical test of hypothesis situation one would wish to accept the
alternative hypothesis only when it is true. Thus the contrast between the power of the
two statistics presented in Table 5a is striking. This is a disturbing aspect of the test
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based on U(H;) (see Figure 2). It can be quite likely to reject the null hypothesis even
though the alternative hypothesis is far from true.

The test based on U(Q") dramatically reduces the power outside the positive orthant,
which is good. There do exist segments of the parameter space outside O* where the
power is high for that statistic, as well. For example, its power will increase as the true

mean moves away from the point z = 0 along the half space boundary p'J =0.

When ) is positive, then the power of the half space test is effectively the same for the
four v;, as can be seen by examining Table 5b. Note that the vector Av; is on the
periphery of O%; and, as )\ increases, the power of the half space statistic eventually
exceeds that of the test statistic U(Q") as the distance from the half space boundary
increases. The results contained in Table 5 are also displayed in Figure 2.

Table 5a. Estimated Powers of U(Q") and U(H;) when p= Av; (Sample Size = 40)

Vector A=-0.8 A=-0.6 A=-04 A=-0.2
UH) | Ugh | UH) | @) | udE) | tgh | UdH)) | u@h)
Vi 872 024 .623 .026 306 .024 .096 .029
Vo .619 012 402 .012 .192 .015 .071 .016
V3 283 004 .188 004 .093 004 050 011
2 .034 .000 .036 .000 .032 .000 .032 .005
Standard error < .005
Observed significances (estimated standard error = .001) U(H;): 050 W(@H): .045
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Table 5b. Estimated Powers of U(Q") and U(H ;) when g = Av; (Sample Size = 40)

Vector A=02 A=04 A=0.6 A=0.8
UH) | @Y | UH)) | U@Y) | UH) | @Y | UH)) | U@
Vi 157 171 .497 520 856 .860 .986 963
Vo .164 .197 497 .569 .856 .892 986 .986
V3 157 215 .502 612 862 915 987 .993
V4 .160 241 497 .633 .857 923 .986 995
Standard error < .005
Observed significances (estimated standard error = .001) U(H}L): 050 U(Q"): .045

EXAMPLE: In their Example 5.2, Johnson and Wichern (1988) analyze a three-
dimensional data set which they call the sweat data. There are 20 healthy female subjects
with X;=sweat rate, Xo=sodium content, and X3= potassium content. The hypothesized
mean is p' = (4,50,10) and by referring Hotelling's 72 to F tables, they reject the null
hypothesis at the 10% level (p=.065). To illustrate the bootstrap we suppose the
alternative of interest (in advance of seeing the actual data) to be one sided and in exactly
the direction of the sample mean, (4.640, 45.400, 9.965). The simple test described by
Follmann (1996) yields a p-value of .0325. By recentering the raw data from their Table
5.1 and redirecting the 2nd and 3rd components, we applied our one-sided test with
30,000 bootstraps. Our estimated p-value is .028 (estimated standard error = .001), which
is consistent with the notion that it is more sensitive to this class of alternatives. Again,
the nonparametric bootstrap has not relied upon the multivariate normality assumption for
validity, but the textbook and recent journal articles do.

S. CONCLUSION

The nonparametric bootstrap has been used to circumvent an existing serious impediment
to implementing the likelihood-ratio test developed by Perlman for one-sided alternatives
for the mean of a multivariate normal population with unknown covariance matrix . This
was demonstrated for the specific alternative hypothesis that the mean is in the positive
orthant. Empirical results verify the intuitive notion that appropriately tailoring the
critical region increases the power of the test and that the relative improvement in power

increases with the dimension.
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Using a test statistic that has some optimal properties (at normality) as well as a very
sound basis for non-normal distributions, we find exact constrained maxima by an
efficient algorithm. The validity of the nonparametric resampling is remarkably good in
this testing context for a range of sample sizes down to those that many would describe as
small. The result is that the bootstrap can deliver greater power than the normal theory
tests by being the only contender to use the relevant alternative. It is all the more
noteworthy that the bootstrap did not use the fact that the data were normal and still it had

greater power than the tests that used that information.

The methodology used in this paper is applicable to cones that are even more "focused"
than is the positive orthant. Furthermore, the procedure is suitable for the non-normal
multivariate distributions that are more realistic models in practice. The extension to the

two-sample problem and the problem of detecting outliers is straightforward.
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APPENDIX: Search Algorithm in p-Dimensional Space

In p-space, the process of calculating the statistic U(x,m,4,0") is a generalization (albeit
more complicated), of what is done in the case where p = 2. As before, if x is in the
positive orthant Q*, then m = x and U(x,m,4,0") is equal to the standard 7% statistic.
Otherwise, the process is to find one or more points located on the periphery of O, in the
highest possible dimensional subspace, which are candidates in the positive orthant, and
then determine which of those points is closest to x. This is accomplished by initially
searching in (p - 1) space, then (p - 2) space, and so forth, until either a point is found or
else it is determined that there is no positive point on any of the p axes which is closest to

X.

Denote by mg a vector with the jth element being zero, ie., mg =
(m1,ms,...,mj.1,0,mjs1,...,mp)' . The values of the elements of m) are those which

minimize the distance in the following equation
q(m(j)) =(X- m(,-))'A'l(x - m(j)). (A.1)

The elements of each my; are obtained in the following manner. As before the elements

of A1 are denoted by ¢y, i,j = 1,2,...,p, and set
d=4"x. (A2)

Let C(;) denote the (p - 1) X (p - 1) matrix obtained by deleting the jth row and column of
A!, and designate by d; the (p - 1) vector realized when the jth element of d is deleted.
The elements m; ma,...,mj.1,Mj+1,....,mp are found, respectively, as the (p - 1) elements of

the vector

Zp = C (_i;')d(i) . (A3)

48




If any of the elements of z(; are negative, then the corresponding point m; is not in the

positive orthant. There are () possibilities to examine. If there is more than one mg)

in O*, then it can be determined which is the closest to x.

If there is no z in which all of the elements are non-negative, then the search moves to
the next lower dimension. This involves defining quantities m(;), Ciij)» and d(;j), where,
for example, C(;j) is formed by deleting the ith and jth rows and columns of Al. Then

one obtains z(;) :

-1
(i) = Ciydgi)- (A4)

There are ( pp_ 2) possibilities to examine before moving to the next lower dimension, if

required. Each time the dimension decreases, the number of elements of d which are
used decreases by one, and one more row and column of 47! are not used. Eventually, if
there is no point in O which is found to be closest to x, then m = 0 and U = 0. This

situation would require the maximum of 2°- 1 searches for m.
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